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กุญแจสำาคัญในการวิเคราะห์เชิงปริมาณสำาหรับพอร์ตโฟลิโอท่ีประกอบไปด้วยตราสารเครดิต คือการ
บ่งชี้การกระจายและค่าคาดหมายของความสูญเสียของพอร์ตโฟลิโอที่เกิดจากการผิดชำาระ บทความนี้ทบทวน
ทฤษฎีการสร้างแบบจำาลองทางคณิตศาสตร์สำาหรับพอร์ตโฟลิโอตราสารเครดิต และวิเคราะห์ระเบียบวิธีที่ 
ไม่ต้องพึ่งการจำาลองสถานการณ์ท่ีใช้กันอย่างแพร่หลายในการการคำานวณการกระจายและค่าคาดหมาย 
ของความสญูเสยี แตเ่ดมิวรรณกรรมเกีย่วกบัระเบยีบวธิเีหลา่นีม้กัมุง่เนน้ไปทีก่ารคำานวณการกระจายของความ
สูญเสียเป็นหลัก โดยละการคำานวณค่าคาดหมายของความสูญเสียไว้ ซึ่งสามารถคำานวณได้โดยปริยายจากการ 
กระจายของความสูญเสีย ในทางตรงกันข้าม บทความนี้นำาเสนอรูปแบบปรับปรุงของระเบียบวิธีเหล่านั้น  
โดยเน้นที่การคำานวณค่าคาดหมายของความสูญเสียเป็นหลัก และอธิบายถึงวิธีการคำานวณย้อนกลับไปหา 
การกระจายของความสูญเสียได้ถ้าต้องการ เราเร่ิมด้วยการทบทวนว่าระเบียบวิธีที่ใช้กันทั่วไปนั้นมีขั้นตอน 
การปฏิบัติเพื่อการคำานวณการแจกแจงของความเสียหายอย่างไร พร้อมทั้งชี้ให้เห็นถึงข้อบกพร่องของขั้นตอน
การปฏิบัติดังกล่าว จากนั้นเราได้เสนอการปรับปรุงระเบียบวิธีให้ดีขึ้น และชี้แจงถึงประโยชน์ที่ตามมาที่จะ
สามารถชว่ยบรรเทาขอ้บกพรอ่งนัน้ได ้และไดน้ำาเสนอตวัอยา่งเชงิเลขทีแ่สดงใหเ้หน็ถงึขอ้ดขีองวธิกีารทีแ่นะนำา
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Abstract

The key to the quantitative analysis of a portfolio of credit instruments is the  
determination of the distribution and the expected value of the portfolio’s default loss.  
This article reviews the theory behind the mathematical modeling of credit portfolios,  
and analyzes the widely-used, non-simulation-based methods for computing the loss  
distribution and the expected losses. Existing literature on these methods typically focuses  
on the computation of loss distribution as the primary quantity of interest, leaving the  
expected loss to be implied from the loss distribution. This article, on the other hand,  
proposes an improved version of these methods that focuses on computing the expected  
loss as the primary quantity of interest, and explains how to retrieve the loss distribution if 
desired. We first provide a concise review of how the methods are commonly implemented 
to compute the loss distribution, and point out the drawbacks of such an implementation. 
We then propose an improved variation of the methods and discuss its benefit in alleviating 
those drawbacks. Numerical examples that demonstrate the advantage of the suggested 
methods are also provided.
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1. Introduction 

Credit instruments generally refer to financial products that are subject to default loss, 
such as defaultable bonds and loans. Thanks to the developments in the derivative market, 
credit instruments have expanded to include the so-called credit derivatives — a class of 
derivative contracts whose payoff are determined by the credit events of certain reference 
entities. A Credit Default Swap (CDS), a contract which pays off based on the reduction in 
market value of the underlying bond when it defaults, is an example of credit derivatives and 
can be considered a type of credit instrument as well. 

Quantifying the credit risk is necessary for both the risk management and the pricing 
of credit instruments. Credit risk management, an important process that impacts many  
areas such as reserve requirement and collateral provision, typically requires assessing  
the probability of default and the size of the loss upon default. Likewise, the pricing of  
credit instruments, such as the determination of bond spread or the valuation of CDS contracts, 
also requires one to quantify the credit risk and assess the loss that can occur from default. 

In many situations, quantifying the credit risk requires one to adopt the so-called  
portfolio view. Consider, for example, the risk management of a bank’s portfolio of loans.  
In addition to assessing the risk-return characteristic of each loan individually, the bank  
must also consider the effect of the correlation between the loans, and assess the risk-return 
characteristic of the entire portfolio as a whole. 

Another situation in which the portfolio view of credit risk must be adopted is the 
analysis of the so-called basket credit derivatives. Such derivative instruments have payoff 
that is based, not on one single credit instruments, but on a portfolio of credit instruments. 
Collateralized Debt Obligations (CDOs), for example, is a form of asset-backed securities that 
results from securitizing a portfolio of debt instruments. A CDO conceptually behaves like a 
fixed-income instrument, paying periodic coupon based on a notional principal that declines 
as obligors in the portfolio default. CDOs are often structured into tranches, where each tranche 
absorbs different portion of the portfolio’s default loss. For example, a CDO structure may 
contains five tranches: 0% – 3%, 3% – 6%, 6% – 9%, 9% – 12%, 12% – 22%. This means that 
the first tranche (known as the equity tranche) absorbs the first 3% of the portfolio’s loss, the 
second tranche absorbs the loss in excess of the first 3% up to 6%, and so on. (The levels 
3%, 6%, ... are called attachment points.) It is known that the risk-return characteristic of CDO 
tranches is very sensitive to the default correlation among obligors. Thus, the pricing and risk 
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management of these tranches require one to adopt the portfolio view. 
The key to the portfolio view of credit risk is the assessment of the portfolio’s total 

loss that occurs from aggregating the default losses from its constituents. Depending on  
which obligors default and how much loss is incurred, different scenarios, each with its own 
likelihood, will result in different values of total loss. Thus, the aggregate loss, when viewed 
as a random variable, follows a probability distribution that depends on the probability of 
default of the constituents, their loss-given-default, and the default correlation. Computing 
this probability distribution is key to the risk management of credit portfolios. For example, 
the Credit Value-at-Risk (VaR), a widely-used measure of credit risk, is defined in terms of the 
quantile of the probability distribution. 

Closely related to the probability distribution, the expected loss is another key  
quantity of interest. In particular, we often want to compute not only the expected loss  
of the entire portfolio, but also the expected loss of certain portions of the portfolio.  
For example, pricing a CDO tranche requires the expectation of the portion of the loss that 
occurs in that tranche. As another example, computing the expected shortfall, a risk measure 
usually reported along with VaR, amounts to computing the expectation of the portion of  
the loss that exceeds a certain threshold. 

In practice, computing the loss distribution or the expected loss is quite challenging. 
This is because, in general, there exists no closed-form formula for computing such quantities. 
(Closed-form formulas exist only in some special cases, such as the case of large homogeneous 
portfolio; see Vasicek (1991).) Monte Carlo simulation, while generally applicable, is not  
recommended because it produces estimates with large variance. (This is due partly to the 
extreme-but-rare nature of default events.) This gives rise to the need for alternative,  
semi-analytical methods that are more computationally effcient and suitable for large  
non-homogeneous portfolios. 

In addition to providing an overview of the theoretical framework that underlies the 
modeling of credit portfolios, this article aims at reviewing and analyzing two widely-used 
numerical methods for computing the loss distribution and the expected loss, providing further 
recommendation of how to effciently implement the methods. Both methods are based on 
the Conditionally Independent Default (CID) framework (which will be described in section 2.2 
below). The first method, referred to as the recursive method, is developed by Andersen et 
al. (2003) and Hull et al. (2004). The second method, referred to as the transform method, 
makes use of the classical theory of Fourier transform and is applied to the context of  
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portfolio credit risk by researchs such as Burtschell et al. (2009), Gregory et al. (2003), Gregory  
et al. (2004), Glasserman et al. (2012). 

This article seeks to present the different ways in which each of these two methods 
can be implemented. While existing literature typically focuses on applying the methods to 
compute probability distribution as the primary quantity of interest, this paper will propose a 
variation of the methods customized for computing expected loss. We will also explain in 
detail why the version that we propose is beneficial in implementation. 

Owing to the theoretical nature of this article, certain parts of the article will be  
mathematically oriented. For example, the article occasionally deals with concepts in  
probability and complex analysis. However, we will review these mathematical concepts in a 
manner that is self-contained, requires minimal prior background, and is tailored specifically 
to the context of credit portfolios. Much care has been taken to make sure that notations are 
kept simple and intuitive. 

The rest of the article is organized as follows. In Section 2, we describe the  
mathematical modeling of credit portfolios, review the literature on CID models, and establish 
the connection between our two quantities of interests: the probability distribution and  
the expectation of the loss. In Section 3, we review the widely-used recursive method for 
computing the loss distribution. We point out the technical issues inherent in the method, 
and then suggest a modification that resolves those issues. Section 4 overviews the Fourier 
transform approach, and discusses the challenges that exist in practice. Then we suggest  
a version of the Fourier transform approach that alleviate those challenges. Section 5 gives 
the conclusion. 

2. Mathematical model of portfolio loss 

2.1 Mathematical Representation 
The modeling of a credit portfolio starts with a mathematical representation of the 

portfolio’s loss. Consider a portfolio of N credit instruments. For each instrument j, let cj denote 
its loss-given-default (assumed known). The portfolio loss, which we will denote by L, is the 
sum of the default loss of its N constituents, namely: 

L  =        cjYj

N

j = 1
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where the random variable Yj, called the default indicator of obligor j, is equal to 1 if the jth 
obligor default and 0 if it does not. Therefore, when Yj = 0, obligor j does not contribute  
any loss to the portfolio loss L. But when Yj = 1, obligor j contributes a loss of cj to the  
portfolio. Let pj = P(Yj = 1) denote the default probability of obligor j. We assume that cj  
and p are known. 

2.2 Conditionally Independent Default 
To capture default correlations, one is required to specify the correlation structure 

among Yj’s. When the number of obligors N is large, the correlation structure among Yj’s can 
be very complex. In this article, however, we shall restrict our attention to a widely-adopted 
class of default correlation models known as Conditionally Independent Default (CID) models, 
which can greatly simplify the correlation structure among defaults even when the number 
of obligors is large. 

To understand the CID model, let us first consider, as an example, a sub-class of CID 
models known as the one-factor copula models. Such models include the well-known  
one-factor Gaussian copula model proposed by Li (2000), which has since become the  
industry standard, as well as various other variations such as t-copula, Marshall-Olkin, Clayton, 
etc. (For reference, see, for example, Laurent et al. (2003), Gregory et al. (2004)). In a  
one-factor copula model, correlation is assumed to be governed by a single random variable, 
say, Z, typically referred to as the “market factor”. The type of copula specifies the range of 
values that Z can take and its probabilistic distribution. (In the Gaussian copula case, for  
example, the market factor can take any values between -   and   and has Gaussian  
distribution.) But when Z is fixed at a particular value, obligors Yj’s are assumed to be  
independent; the conditional default probability, denoted by P(Yj = 1|Z), is assumed to be  
a known function of Z. Because the default probabilities of all obligors are affected by Z, the 
random variable  Z in effect produces the correlation among defaults. 

Extensions of the CID models that include many factors are referred to as multi-factor 
models, studied in works such as Glasserman et al. (2007) and Glaserman et al. (2012). A more 
advanced class of CID models assume that correlation is governed by a process rather than a 
single random variable. In such case, obligors become independent conditioned on the path 
of that process. Examples include Schoesser et al. (2009), Brunlid (2006), as well as the CID 
intensity-based models discussed in Duffie et al. (2001) and Mortensen (2006). The analysis  
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in this article, while focused on the one-factor copula case, can be extended to these more 
advanced settings as well. 

2.3 Quantities of interest 
In this section, we highlight some important quantities that we want to compute.  

The first quantity, which is fundamental in the analysis of credit portfolios, is the probability 
of the form: 
 P(L < x)  ,  x    R (2.1)

This is the probability that the loss does not exceed a threshold x. When considered 

as a function of x, (2.1) is typically referred to as the cumulative distribution function (cdf) of 
L. (The cdf of a random variable is commonly used to describe the distribution of the random 
variable.) Another related probability is the “tail probability” of the form: 

 P(L > x)  ,  x    R (2.1)

This is the probability that the portfolio loss is x or above. The relationship between 

(2.1) and (2.2) is given by P(L > a) = 1 - limx|a P(L < x). The tail probability (2.2) is important in 
risk management. For example, computing the value-at-risk (VaR), which is defined as a  
quantile of the distribution of L, inevitably requires computing the tail probability (2.2). 

Many applications require one to compute not only the probabilistic distribution of 
the portfolio loss but also the expected amount of loss. More specifically, one is often required 
to compute expectation of the form: 

 E(L L x)  ,  x    R (2.3)

where L L x = min{L,x}; that is to say, L L x takes the value of either L or x,  
whichever is smaller. The quantity L L x represents the amount of portfolio loss that does 
not exceed x. Therefore, the quantity (2.3) above represents not the expectation of the entire 
portfolio loss L but rather the expectation of only the portion of L that does not exceed x.  
In the context of CDOs, this is the expected loss of the (equity) tranche which absorbs the first  
x dollar of default losses. As for a CDO tranche with lower attachment point a and upper  
attachment point b, it can be shown that the expected loss is E(L L b) - E(L L a). Pricing and 
risk management of CDOs, therefore, require computing expectation of the form (2.3). 
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A closely related expression is: 

 E(L - x)+  ,  x    R (2.4)

This is the expected loss in excess of x (in other words, the expected loss absorbed 
by the tranche). It can be shown that E(L L x) + E(L - x)+ = E[L] =            . Because of this 
relationship, one can easily retreive (2.3) from (2.4), and vice versa. Apart from its relevance 
in CDO pricing, the quantity (2.4) is also closely linked to the concept of expected shortfall, 
which is defined as the expected loss in excess of a certain threshold and is used along with 
the value-at-risk for the purpose of risk management. 

As an emphasis of this article, we will now argue that the probabilities (2.1-2.2)  
and the expectations (2.3-2.4) are, in fact, dual quantities, in the sense that the knowledge  
of one implies the knowledge of the other. To see this, note the fact2 that 

 E(L - x)+  =      P(L > x) dx  , or  P(L > x) =  -       E(L - x)+ (2.5)

 where the second equality holds for every x at which E(L - x)+  is differentiable.  
Identities (2.5) complete the linkage among (2.1), (2.2), (2.3), and (2.4); the knowledge of  
any one of them (for all x) implies the knowledge of the others. 

In practice, computing the loss distribution (2.1-2.2) and the expected loss (2.3-2.4)  
is quite challenging, because there exists no closed-form formula in general. For the special 
case of homogeneous portfolio, in which all obligors have the same probability of default and 
loss-given-default, Vasicek (1991) has derived a closed form formula for (2.2) for a granula 
(infinitely large) portfolio under the 1-factor Gaussian copula correlation structure. But for  
the general, more realistic case of non-homogeneous portfolio, computing (2.1-2.4) is more 
challenging. The rest of the papers detail the various methods for computing such quantities, 
along with our recommendation of how to implement them. 

3. The Recursive Method

The first method that we will discuss is the recursive method, as appeared Andersen 
et al. (2003) and Hull et al. (2004). We review the method in Section 3.1 below, and point out 
the challenges behind the implementation. Then, in Section 3.2, we present a variation of the 
method that addresses those challenges. 

N pjcjJ =1S

2 The outline of the proof is as follows. First, note the identity (L = x)+ =   1{L > u} du, where 1{.}denote the indicator  
function. Taking the expectation on both sides yield the first part of (2.5). which in turn implies the second part.

d
dxx

x
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3.1 Probability Bucketing 
The idea behind the method presented in Hull et al. (2004) is as follows. 
Let us first consider the case of independent defaults. Let 0 = x0 < x1 < x2 < ...  

be a sequence of increasing real numbers. Consider a portfolio of n obligors. Let wk :=  
P(xk-1 < L < xk) denote the probability that the default loss of the portfolio consisting of  ob-
ligors takes value in the k th “bucket” (xk-1 , xk) . We assume further that the probability wk is 
concentrated at a point ak    (xk-1 , xk). Therefore, the loss distribution can be represented by 
the set of pairs {(ak , wk) : k = 1, 2, ...}, which can be visualized as a bar chart in which vertical 
bars of height wk’s are placed at points ak’s on the horizon axis. (This plot is similar in concept 
to the probability mass function of L.) In this setting, the cdf (2.1) is given by P(L < x) =  
Sk : ak < xWk.

The method attempts to determine what will happen to the loss distribution if one 
more obligor is added into the portfolio. Let p and c denote the default probability and the 
loss-given-default of the new obligor. The loss distribution, after the new obligor is added, will 
be a combination of the following two cases. With probability 1 - p , the new obligor does not 
default and the portfolio incurs no additional loss. So the loss distribution for this case is  
the same as before, but with the wk’s adjusted by the chance that the new obligor does not 
default, i.e., {(a1, (1 - p)w1), (a2, (1 - p)w2), ... }. But if the new obligor defaults, the portfolio  
loss will increase by c and the loss distribution, after adjusted by the default probability p, 
will shift to the right by c, i.e., {(a1, + c, pw1), (a2, + c, pw2), ... }. Combining these two cases, 
the new loss distribution, denoted by {(a1, + w1), (a2, w2), ... }, is obtained as follows: 

 wk = (1 - p)w1 + pwj (3.6)

 ak = (1 - p)wk ak/wk + pwj (aj + c)/wk (3.7)

where j is such that aj + c  (xk-1, xk) The above is the result of combining (ak, (1 - p)wk) 
from bucket k of the non-default case, and (aj + c, pwj ) that gets “shifted” from bucket j  
of the default case. For wk, we combine the two cases simply by adding the two  
probabilities (1 - p)wk  and pwj. Although these two probabilities are not concentrated at  
the same point (one at ak and the other at aj + c), the method makes a rough approximation 
by “lumping” the probabilities together at a single point ak, which is a weighted average of  
ak and aj + c. 

~ ~

~

~

~

~

~ ~ ~ ~

~

~

~

~

~ ~

~

~ ~

~

~

~

~ ~ ~ ~ ~

~ ~

~~ ~

~



66

Equations (3.6-3.7) enable one to compute the loss distribution of a portfolio of any 
size. By starting with an empty portfolio and successively adding one obligor at a time, one 
can iterate (3.6-3.7) to arrive, ultimately, at the loss distribution of the full portfolio. 

We can extend this method to the case of correlated defaults under the CID model. 
Under the CID model with one market factor Z, for example, the tail probability can be  
computed by 

                             P(L > x)  =       P(L > x|Z = z) f (z) dz

Because of the CID property, the conditional probability in the integrand can be computed 
using the method described above. 

To complete the discussion of the method, let us note a few issues that require  
some care. First, the above method is valid when all buckets are of equal size. This ensures 
index j in (3.6-3.7) is uniquely defined. In practice, one may want to use finer partition  
(smaller buckets) for parts of the distribution that we are particularly interested in (such as the 
tail of the distribution), and use coarser partition (bigger buckets) for the other parts. In such 
a case of non-uniform bucket size, the indexing in (3.6-3.7) needs to be modified, and the 
resulting formulas will become slightly more complex.3 

A more serious drawback of this method is attributed to the discretization error. As 
mentioned, the probability mass wk in bucket k can, in actuality, be scattered at many points 
in the interval (xk-1, xk] . But because the method “lumps up” the whole probability wk at a 
single point ak, it loses some information about the true distribution and, as a result,  
produces an approximation error. This discretization error gets more pronounced when  
bucket size is large and when more and more obligors are added to the portfolio. 

These problems prompt us to seek an alternative method in the next section. 

3.2 Suggested Alternative Method 
To address the problems inherent in the method of the previous section, in this  

section we recommend an alternative procedure in computing the portfolio loss. The proposed 
method, and its benefits over the traditional method, will be discussed presently. 

3 More specifically, if we let Bk denote the set of all j’s such that aj + c   (xk-1, xk], then the update formulae should be 
modified to :
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Similar to the previous section, our method constructs the portfolio loss by  
recursively adding obligors one by one. But instead of recursively computing the probabilities 
(wk’s), we recursively compute the expected loss. To describe the method in more detail, first  
consider the case of independent defaults. Let h(x) := E(L L x), where  is a portfolio loss  
containing n obligors, and x   R. Assume that h(x) is known for x = x1, x2, .... Now, suppose 
another obligor, with default probability p and loss-given-default c, is added to the portfolio. 
Let L denote the loss of the new portfolio (which contains n + 1 obligors), so that L = L + c 
if the new obligor defaults (with probability p), and L = L otherwise. Therefore, if we let  
h(x) = E(L L x), then

 h(xj)  =  E(L L xj) = (1 - p)E(L L xj) + pE[(L + c) L xj]

   (1 - p)h(xj) + p [c + E[L L (xj - c)]]                     (3.7)

where the last equality follows from the fact that (L + c) L xj = c + [L L (xj - c)] Since  
h(x) = E(L L x) is a continuous function of x, we can approximate E[L L (xj - c)] by linearly  
interpolating between h(x -1) and h(x ), where     is such that x  -1 < xk - c < x . Therefore, (3.10) 
becomes 

Similarly to the previous section, if one starts with an empty portfolio (for which the 
expected loss is zero) and successively adds one obligor at a time, then iterative applications 
of (3.11) will enable one to obtain the value of E(L L y)  where L is a portfolio of any size. 

If defaults are correlated under the CID structure, then we use the fact that obligors 
becomes independent upon conditioning on a value of the market factor Z = z, and use the 
above recursion to compute the conditional expected loss  E(L L x |Z = z). The unconditional 
expected loss can then be obtained by 

where the integral is approximated by numerical integration. 
Since the recursion (3.11) computes the expected loss without having to compute  

the probability distribution first, it is more appropriate for pricing basket credit derivatives  

~

~

~

~

~

~

~

~ ~ ~

~ ~ ~ ~

~

~

~

~

~

~ ~

~ ~

~ ~ ~ ~
~ ~

h(xk)  =  (1 - p)h(xk) + p  c +                h(x -1) +                 h(x ) 
x  - xk + c xk - c - x -1
x  - x -1 x  - x -1

(3.11)

 E(L L x)  =       E(L L x |Z = z) f (z) dz
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(or for computing expected shortfall). And thanks to the relationship (2.5), the expected  
loss from recursion (3.11) can be used to imply the loss distribution, if so desired. 

Let us now discuss other important advantages of this method. Recall that (3.6-3.7) 
are valid only for the case where x1, ..., xk are equally-spaced (equal bucket size). The  
formula (3.11), on the other hand, is valid regardless of whether or not the buckets are 
equally-spaced. More importantly, in contrast to the method in the previous section, recursion 
(3.11) uses linear interpolation to alleviate the discretization error, taking advantage of the fact 
that E(L L x) is continuous in x. In fact, it can be shown that E(L L x) is piece-wise linear in x, 
hence there are instances in which the linear interpolation produces no approximation error 
at all. This is the main reason why it is preferable to use the recursive method to build up the 
portfolio’s expected loss, rather than the loss distribution.

 
3.3  Numerical Demonstration 
To demonstrate the accuracy of the suggested method, consider the following  

numerical example. Consider a credit portfolio with 125 obligors. (This is the typical number 
of obligors in index portfolios such as the iTraxx.) Assume that the default probabilities of  
the obligors are uniformly distributed between 2% and 5%, and the losses-given-default  
(i.e., exposure less recoverable amounts) are between 0 to 5 (million). The correlation structure 
among obligors is assumed to follow a one-factor Gaussian copula with correlation 0.5.  
For this sample portfolio, the risk measures obtained from using the above methods are shown 
below. Here, we set the bucket size xk - xk-1 to be equal to 1.

Bucketing Method 
(Section 3.1)

Suggested Method 
(Section 3.2)

Actual Value

90% - Value-at-Risk

 - Expected shortfall

 30.4

 67.6

 31.1

 68.1

 31.2

 68.1

95% - Value-at-Risk
 - Expected shortfall

 54.0
 94.4

 55.0
 95.1

 54.7
 95.1

99% - Value-at-Risk
 - Expected shortfall

121.1
157.2

122.0
160.3

121.6
160.2

Table 1 Shows the values-at-risk and the expected shortfall at three probability levels. The 
column ‘Actual Values’ displays the true value calculated as the limit as the bucket size goes 
to zero.
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As can be seen, the suggested method, in addition to being easier to implement  
(as explained in Section 3.2), is more accurate overall. While both methods give roughly  
the same VaRs, it should be noted that the suggested method gives noticeably better  
result for the expected shortfall. This is because the suggested method is designed to take 
advantage of the continuity property of the expected loss function (2.3-2.4). Therefore, even 
with large bucket size of 1, the suggested method gives remarkably accurate results. To confirm 
this point, the following plot shows the rate of convergence of the two methods as the 
bucket size decreases.

Figure 1 Compare the rate of convergence of the two methods as the bucket size decreases. 
The vertical axis shows the expected shortfall at 99%. The horizontal axis shows the bucket 
size on the logarithmic scale.

 As seen, the suggested method produces better approximation for the actual value  
of the expected shortfall.
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4. Fourier Transform Methods 

This section discusses the transform method for analyzing portfolio of credit  
instruments. A concise review of the general method of Fourier transforms is given in  
Section 4.1. In Section 4.2, we use the Fourier framework to derive a formula for computing 
the loss distribution, and then point out some problematic issues of the approach.  
Section 4.3 then suggests a different approach that resolves those issues. 

4.1 Mathematical Background on Fourier Transforms and Inversions 
A comprehensive background on the transform method can be found in Abate et al. 

(1992) and Abate et al. (1995). Here, we provide a concise review of the theory relevant to 
our analysis.

Let g(x) be a complex-valued function. Assume that g is integrable, i.e.,    |g(x)|dxis  
is finite. For any real number w, define y(w) as: 

where i =   -1 is the imaginary unit. The complex-valued function y is called the Fourier  
transform of g. The value of g can be retrieve from y using the so-called Fourier inversion  
formula: 

In many applications, the quantity of interest is a function g(x) that is difficult to  
compute directly, but its Fourier transform turns out to be relatively easy to compute. In such 
situations, equation (4.12) allows one to use the Fourier transform y to retrieve the quantity 
of interest g(x). For the special case where g is real and defined only on x > 0, the inverse 
formula can be shown to simplify to: 

Since the portfolio loss is a real, nonnegative random variable, we shall base the  
following analysis on this simplified inversion formula. 

 y(w)  :=       eiwx g(x) dx

 g(x) :=           e-iwxy(w) dw1
2p

(4.12)

0 0
 g(x) =         cos wx Re y(w) dw =         sin wx Im y(w) dw2

p
2
p (4.13)
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4.2 Computing Loss Distribution using Fourier Inversion Method 
Fourier transform method has been widely used to analyze the loss portfolio (see 

Burtschell et al. (2009), Laurent et al. (2003), Gregory et al. (2004), Glasserman et al. (2012), 
etc.) The most direct application of this techniques is to compute the tail probability P(L > x) 
that defines the distribution of the portfolio. The technique makes use of the observation  
that, while P(L > x) usually cannot be computed directly by an analytical formula, its  
Fourier transform can be computed quite easily. It can be shown that the Fourier transform 
of P(L > x) is 

where f(w) := E[eiwL] is the so-called characteristic function of L, which can be computed  
easily as follows. If defaults are independent, f(w) is given by: 

The second-to-last equality follows from the independent assumption, and the last 
equality makes use of the observation that E[eicjYj] = 1 - pj + pje

iwcj. If defaults are not  
independent but has a CID structure with one market factor Z, one can compute f(w) by 

Since obligors become independent conditioned on Z = z, the expectation in the integrand 
above can be computed by (4.15) with pj replaced by the conditional default probability. 

Once the Fourier transform (4.14) is obtained, we can use the inversion formula to 
compute P(L > x). The knowledge of P(L > x) implies the distribution of the portfolio loss, 
which one can subsequently use to compute the expected loss. 

 
4.3 Suggested Procedure for Computing Expected Loss
We now present a more direct procedure for computing the expected loss. Rather 

than evaluating the inversion integral to obtain the probability distribution of the portfolio 
loss, we derive an inversion integral for the expectation of the portfolio loss instead. We now 
describe the method. 

(4.14)
0 i(w)

f(w) - 1e-iwxe-iwx P(L > x) dx =

(4.15)f(w) = E[eiwL] = E[eicjYj] = (1 - pj + pje
iwcj)

N N

j=1 j=1
P P

f(w) =      E[eiwL|Z = z] f (z) dz 
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Our method begins by deriving the Fourier transform of : E(L - x)+ : 

 Here, the first equality results from integrating by parts and then using (2.5). The second 
equality follows by substituting (4.14). By taking the real part of (4.16) and applying inverse 
formula (4.13), one obtains the following formula for computing the expected loss E(L - x)+: 

where the second inequality follows from the fact that                                              (this 

fact can be easily proved by letting x = 0 in the above equation). The last integral in (4.17)  
is preferable to the integral preceding it because the last integrand is more stable at w = 0.  
(This is because, unlike cos wx/w2, the value of (1 - cos wx)/w2 is bounded around the  
neighborhood of w = 0.) In the last integral (4.17), therefore, the error (if any) that one incurs 
when approximating the characteristic function will not be adversely affected by the factor   
1/w2 in the neighborhood of w = 0.

Similarly, one can use the second part of (4.13) to show that

(Here, the second equality follows from the fact that                              for all x.) 

 With the characteristic function f(w) computed in the manner described in the  
previous section, equations (4.17) and (4.18) provide a direct way to compute the expected 
loss without the need to compute the probability distribution of L. This is beneficial in  
situations that require only the values of expected loss such as computing expected shortfall, 
or pricing basket credit derivatives. (In applications that require the probability distribution of 
L, one can make use of (2.5).) 

(4.16)
0 0 w2iw iw

1 - f(w) + iwE[L] E[L] 1eiwxE(L - x)+ dx = eiwx P(L > x) dx =+

0 w2
1 - Re f(w)E(L - x)+ = cos wx dw2

p

0
 (1 - cos wx) =  E[L] - 2

p w2
1 - Re f(w) dw

0
 =  E[L] 2

p w2
1 - Re f(w) dw

(4.17)

0 w2
wE[L] - Im f(w)E(L - x)+ = sin wx dw2

p

0
 sin wx =  E[L] - 2

p w2
Im f(w) dw (4.18)

0

 sin wx  = 
2w2 dw p
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Although (4.17) and (4.18) are theoretically equivalent, in practice we suggest using 
(4.18) rather than (4.17). In computing the integrals (4.17-4.18) numerically, one unavoidably 
incurs the truncation error that comes from approximating the indefinite integral with a definite 
integral. Because the integrand in (4.17) is nonnegative (as opposed to the integrand in (4.18) 
which alternates signs as w varies), truncating the integral (4.17) will result in over-estimating 
the true value of E(L - x)+. On the other hand, in practice we find that (4.18) converges  
quickly to the true value of E(L - x)+.

4.4  Numerical Demonstration 
We now demonstrate the use of (4.17-4.18) in computing the expected shortfall of a 

credit portfolio. Consider the sample portfolio from Section 3.3. The expected shortfall at 
various probability level, computed from (4.17-4.18), are shown below. Here the integrals 
(4.17-4.18) are truncated at w = 10.

Using (4.17) Using (4.18) Actual Value

Expected shortfall @ 90%  68.4   68.1  68.1

Expected shortfall @ 95%  95.7   95.1  95.1

Expected shortfall @ 99% 163.6 160.3 160.2

Table 2 Compare the expected shortfall at three probability levels, as computed using the 
inversion integral (4.17) versus using (4.18).

As seen from Table 2, while both integrals (4.17-4.18) approximate the actual value of 
the expected shortfall quite well, the suggested method (4.18) yields much more accurate 
results. The expected shortfall computed from (4.17) over-approximates the actual value 
because, as explained previously, the non-negativity of the integrand in (4.17) accentuates the 
truncation error. On the other hand, the integral (4.18) converges quite quickly to the actual 
value. The following plot compares the rate of convergence of both integrals.
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Figure 2 Expected shortfall at probability 99%, computed using (4.17-4.18). The cutoff point 
is the point at which the indefinite integrals (4.17-4.18) are truncated.

As seen, the suggested method (4.18) produces accurate result even for low cutoff 
points, while the integral (4.17) takes longer to converge to the actual value. This makes it 
more preferable to use (4.18) in practice, as it provides better approximation with lower  
computational effort.

5. Summary 

The management of credit risk and the pricing of credit derivatives often require  
one to adopt the portfolio view. The default risk of credit instruments in a portfolio must  
be assessed not only on the individual basis but also in the aggregate manner as well.  
This article discusses the theoretical framework and the numerical techniques involved in the 
quantitative analysis of a portfolio of credit instruments. 
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The framework under discussion is the conditionally-independent default (CID)  
framework. In such a framework, correlation among defaults is driven by a set of market  
factors, conditioned upon which obligors become independent. This framework facilitates  
the analysis of large portfolios and has been widely adopted as the industry standard. 

In the quantitative analysis of a credit portfolio, the key quantities of interest are  
the distribution and the expectation of the amount of total loss that results from the defaults 
of the portfolio’s constituents. This article emphasizes the close relationship between the two 
quantities: The expected loss of any portion of the portfolio can be implied if one knows the 
distribution of the loss amount. Conversely, the loss distribution can be implied if one knows 
the expected loss of any portions of the portfolio. 

Computing the loss distribution and the expected loss can be challenging because,  
in general, there exists no closed-form formula with which one can compute those quantities. 
This article analyzes two widely-used numerical methods for computing the portfolio loss. 
The recursive method reconstructs the portfolio loss by successively adding one constituent 
at a time to the portfolio. The transform method computes the portfolio loss indirectly through 
the inversion of its Fourier transform. 

In addition to reviewing the methods, we point out the challenges in their  
implementation and provide alternatives that address those challenges. The literature  
traditionally focuses on computing the probability distribution of the portfolio loss, leaving 
the expected loss to be implied from the loss distribution. The suggested methods in this 
article, in contrast, are tailored to compute the expected loss in a given portion of the  
portfolio. Because the suggested methods compute the expected loss without having  
to compute the loss distribution first, they are particularly attractive for the purpose of pricing. 
The loss distribution, if desired, is shown to be easily retrievable from the knowledge of the 
expected loss of different portions of the portfolio. More importantly, the suggested methods 
take advantage of certain features of the problem to alleviate numerical issues related to 
estimation and discretization. We provide a detailed description of the suggested methods 
and discuss the benefits that such methods bring to implementation. 
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